Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Med ; 29(2): 358-365, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185960

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infections in vaccinated individuals and reinfections in previously infected individuals have become increasingly common. Such infections highlight a broader need to understand the contribution of vaccination, including booster doses, and natural immunity to the infectiousness of individuals with SARS-CoV-2 infections, especially in high-risk populations with intense transmission, such as in prisons. Here we show that both vaccine-derived and naturally acquired immunity independently reduce the infectiousness of persons with Omicron variant SARS-CoV-2 infections in a prison setting. Analyzing SARS-CoV-2 surveillance data from December 2021 to May 2022 across 35 California state prisons with a predominately male population, we estimate that unvaccinated Omicron cases had a 36% (95% confidence interval (CI): 31-42%) risk of transmitting infection to close contacts, as compared to a 28% (25-31%) risk among vaccinated cases. In adjusted analyses, we estimated that any vaccination, prior infection alone and both vaccination and prior infection reduced an index case's risk of transmitting infection by 22% (6-36%), 23% (3-39%) and 40% (20-55%), respectively. Receipt of booster doses and more recent vaccination further reduced infectiousness among vaccinated cases. These findings suggest that, although vaccinated and/or previously infected individuals remain highly infectious upon SARS-CoV-2 infection in this prison setting, their infectiousness is reduced compared to individuals without any history of vaccination or infection. This study underscores benefit of vaccination to reduce, but not eliminate, transmission.


Subject(s)
COVID-19 , Male , Humans , SARS-CoV-2 , Reinfection , Breakthrough Infections
2.
Sci Rep ; 11(1): 2547, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1052737

ABSTRACT

In the early stages of an outbreak, the term 'pandemic' can be used to communicate about infectious disease risk, particularly by those who wish to encourage a large-scale public health response. However, the term lacks a widely accepted quantitative definition. We show that, under alternate quantitative definitions of 'pandemic', an epidemiological metapopulation model produces different estimates of the probability of a pandemic. Critically, we show that using different definitions alters the projected effects of key parameters-such as inter-regional travel rates, degree of pre-existing immunity, and heterogeneity in transmission rates between regions-on the risk of a pandemic. Our analysis provides a foundation for understanding the scientific importance of precise language when discussing pandemic risk, illustrating how alternative definitions affect the conclusions of modelling studies. This serves to highlight that those working on pandemic preparedness must remain alert to the variability in the use of the term 'pandemic', and provide specific quantitative definitions when undertaking one of the types of analysis that we show to be sensitive to the pandemic definition.


Subject(s)
Communicable Diseases/epidemiology , Disease Outbreaks , Pandemics , Algorithms , Communicable Diseases/etiology , Evaluation Studies as Topic , Humans , Markov Chains , Models, Theoretical , Probability , Public Health Surveillance , Risk Assessment , Risk Factors , Travel
SELECTION OF CITATIONS
SEARCH DETAIL